
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

HARTING HAIIC MICA GPIO Container 
 
 
 

 

 

 

 

 



HAIIC MICA  GPIO Container 

2 HARTING IT Software Development 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Edition 2016, 07/16 

Doc No 20 95 100 0003 / 99.01 

 

© HARTING IT Software Development, Espelkamp 

 

All rights reserved, including those of the translation. 
 

 
No part of this manual may be reproduced in any form (print, photocopy, microfilm or any 

other process), processed, duplicated or distributed by means of electronic systems without 

the written permission of HARTING Electric GmbH & Co. KG, Espelkamp. 

 

Subject to alterations without notice. 
 
 
This application note explains how to use the GPIO container and demonstrates the json-rpc 
calls to configure the GPIOs. 
 

 

  



HAIIC MICA  GPIO Container 

HAIIC MICA GPIO Container, Edition 2016 3 

Contents 
 

Contents ........................................................................................................................ 3 

1 GPIO Container Basics ......................................................................................... 4 

1.1 Overview .................................................................................................... 4 

1.2 Installation ................................................................................................. 4 

2 User-Interface of the GPIO Container .................................................................. 5 

2.1 Overview of the User Interface ................................................................ 5 

2.2 Accessing the GPIOs over JSON-RPC Calls .......................................... 6 

 



HAIIC MICA  GPIO Container 

4 HARTING IT Software Development 

1 GPIO Container Basics 

1.1 Overview 

The GPIO container offers interfaces to access the GPIOS described in the Hard-

ware Development Guide. A webserver runs on the container with the following fea-

tures:  

-A webGUI to configure the GPIOs  

-A websocket interface to access the GPIOs over JSON-RPC calls  

-SSO-Integration to allow access only after authentication  

MQTT can be used as a transport protocol to other applications. Events can be de-

fined for each GPIO pin in order to subscribe outputs for being set by published 

messages or on the other hand pins configured as input publish MQTT state mes-

sages every 200 ms. The state information is sent by the MQTT payload as int 

number ( 0 for off and 1 for on ). 

 

1.2 Installation 

 

 
 
 
 
 
 

Figure 1: MICA Homescreen Including a Highlighted GPIO Container 

 

 

The installation and configuration routine of the GPIO Container follows the standard 

routine as provided by the IIC MICA and can be found in the “MICA Programming 

Guide”. 

 

 

 

 

 



HAIIC MICA  GPIO Container 

HAIIC MICA GPIO Container, Edition 2016 5 

2 User-Interface of the GPIO Container 

2.1 Overview of the User Interface 

 

 

 

 

The GPIO Container provides a web application to configure and set GPIO pins comfortably 

via MICA Web-GUI. Just click on the installed Container Icon. You can turn each pin on or 

off via the second button. GPIO channels can be reconfigured from Input to Output via the 

first button. Via On/Off Button you can set the state for output pins. The GPIO web-gui uses 

a JSON-RPC websocket-service to access GPIO hardware.  

As an alternative approach MQTT is implemented communicate to GPIO, though 

configuration for MQTT  

Figure 2: User Interface of the GPIO Container 



HAIIC MICA  GPIO Container 

6 HARTING IT Software Development 

(subscribing/unsubscribing/registering publishers/ broker) is done by JSON-RPC calls via 

websockets. Caution: Check that all channels are in default configuration when 

attaching them to a new hardware device! 

 

 

2.2 Accessing the GPIOs over JSON-RPC Calls 

 
One way to configure the GPIOs is by using a websocket connection. 
 
Example: Connecting to the Websocket Service of the GPIO container from the Python 3.4 
Demo Container 1.1.0 
 
Configure the Python Container as described in the Programming Guide and connect it to 
the internet as described in Chapter “GUI Programming”. Access the WebGUI of the Python 
3 Demo Container. Start a new project and a new script by inserting a project and a script 
name in the Python editor on the webpage and clicking enter. In case you want to use an-
other container make sure Python3, pip3, urllib3 and websockets are installed. 

 

Enter the following Python Script: 

 

import sys, json, websocket, ssl, urllib3 

import base64 

import hashlib 

from base64 import b64encode 

 

 

MICA = "mica-cp.local"       # MICA Base Name, works only if base 

and container configured with ipv4 

GPIO_CONTAINER = "GPIO3"     # GPIO Container Name 

ROLE = "admin" 

PW = "admin" 

 

passwd_b64 = str( b64encode( bytes( PW, "utf8" ) ), "utf8" ) 

service_url = "https://"+MICA+"/base_service/" 

rpc_obj = { 

    "jsonrpc": "2.0", 

    "id":1, 

    "method":"get_auth_token", 

    "params":{ 

        "user": "admin", "pwd": passwd_b64 

        } 

} 

http = urllib3.PoolManager(cert_reqs= ssl.CERT_NONE, 

assert_hostname=False, ca_certs="/META/harting_web.crt") 



HAIIC MICA  GPIO Container 

HAIIC MICA GPIO Container, Edition 2016 7 

at = http.urlopen( "POST", service_url, body=json.dumps( rpc_obj ) ) 

 

 

rep_data_str = str(at.data, "utf-8") 

ret = json.loads (rep_data_str) 

ret1 = ret["result"][1] 

 

ws_url = "wss://"+MICA+"/"+GPIO_CONTAINER+"/" 

 

wesckt = websocket.create_connection( ws_url,sslopt = {"cert_reqs": 

ssl.CERT_NONE, "ca_certs":"/META/harting.crt", 

"check_hostname":False}) 

 

call = {"id": 1, "method": "login", "params": [ret1]} 

wesckt.send( json.dumps(call) ) 

print( json.dumps(call) ) 

result_str = wesckt.recv() 

print (result_str) 

call = {"id": 1, "method": "get_pin_states", "params": [0]} 

wesckt.send( json.dumps(call) ) 

result_str = wesckt.recv() 

print (result_str) 

 

 

The response should look like this: 

{"id":1,"results":[{"direction":1,"event":"","state":0},{"direction"

:0,"event":"","state":0},{"direction":1,"event":"","state":0},{"dire

ction":0,"event":"","state":0},{"direction":0,"event":"","state":0},

{"direction":0,"event":"","state":0},{"direction":0,"event":"", 

"state":0},{"direction":0,"event":"","state":0}]} 

 

Further rpc-calls to configure the pins are described in the following. For convenience 

purposes, id and json-rpc properties are left out, Symbols: >>>: defines request from client 

to service, <<<: defines response from service. 

Set state of pin 

Method:  set_state 

Parameters:  gpio_pin_number (integer value between 0 and 7 (pin 1 to pin 8) ), 

state (integer value between 0 (off) and 1 (on)) 

Return Value: Configuration of pin in case of success, error message including error code in 

case of error 

 
Set pin 1 on 
>>> { "method" : "set_state", "params" : [ 0, 1 ] } 



HAIIC MICA  GPIO Container 

8 HARTING IT Software Development 

<<< { "result" : 1 } 

 

Set pin 1 on (but configured as input) 
>>> { "method" : "set_state", "params" : [ 0, 1 ] } 

<<<{ "error":{"code":-32094,"data":"Pin configured as Input!","mes-

sage":"Server Error"} } 

 

Set direction of pin 

Method:  set_configuration 

Parameters:  gpio_pin_number (integer value between 0 and 7 (pin 1 to pin 8) ), 

direction (integer value between 0 (output) and 1 (input)) 

Return Value: Configuration of pin in case of success, error message including error code in 

case of error 

Example: 

 

Set pin 1 to input 

>>>{ "method" : "set_configuration", "params" : [ 0, 1 ] } 

<<<{ "result" : [0,1,0,false] } 

 

Get pin information 

Method: get_pin_states 

Parameters: integer between 0 and 10 

Return Value: json array of all pins including state, direction and MQTT event topic infor-

mation 

Example: 
 

>>>{ "method" : "get_pin_states", "params" : [0] } 

<<<{"result": [{"direction": 1,"event":"","state":0},{"direc-

tion":0,"event":"pin2","state":0},...,{"direc-

tion":0,"event":"pin4","state":1}]} 

 
 

When using MQTT connect to a broker by typing in an address or mdns-name in the text 

field on top of the container website. Click the connect button. The Man/Auto switch can 

then be used to register topics for each pin. Man means you can set input/output configura-

tion via RPC and set state while configured as output. After turning the Button to Auto 

means the pin becomes a subscriber if set to output or a publisher if set to input. While 

turned to Auto you will not be able to use In/Out and On/Off Button of the according pin any-

more. 

Input information is published only if state changes of the according pin occured. 

MQTT state information is published / expected by subscribed pin in JSON Format: 

 { 

  "state":<0|1>,  

  "gpio_pin":< 0 - 7 >(optional value) 

 } 

Get MQTT connection state 

 { 



HAIIC MICA  GPIO Container 

HAIIC MICA GPIO Container, Edition 2016 9 

  "state":<0|1>,  

  "gpio_pin":< 0 - 7 >(optional value) 

 } 

Method: get_mqtt_state 

 Parameters: none 

 Return Value:  In case a connection is established already the broker ip or broker.<mica-

name>.local is returned, if not "off" is returned 

 Example: 

  get MQTT state 

  >>> { "method" : "get_mqtt_state", "params" : [] } 

  <<< { "result":" mqtt-mica-n7v6o.local" } 

 

Enable MQTT Communication with Broker 

Method: enable_mqtt 

Parameters: broker_ip ( ip or mdns name of MQTT broker to connect to as string value ) 

 Return Value: 

  "Success" in case of success, error message including error code in case of error. 

 

Example: enable MQTT connection to broker with name "mqtt-mica-n7v6o.local” 

>>> { "method":"enable_mqtt", "params":[" mqtt-mica-n7v6o.local"] } 
<<< { "result":"Success" } 

   

Disable MQTT Communication with Broker 

Method: disable_mqtt 

Parameters: none 

Return Value: "Success" in case of success, error message including error code in case of 

error 

  

Example: disable MQTT connection 

>>> { "method" : "disable_mqtt", "params" : [] } 

<<< { "result":"Success" } 

   

Register MQTT event, if pin is configured as output, an event is subscribed for this output 

pin. If configured as input, registering this pin leads to MQTT event publishing of input state 

information every 200 ms. 

 Method: subscribe 

 Parameters: gpio_pin_number (integer value between 0 and 7 (pin 1 to pin 8) ), topic (string 

value of registered MQTT event topic) 

 Return Value:  "Success" in case of success, error message including error code in case of 

error 

 Example:   register event with topic "pin1-topic" for pin 1 

>>> { "method" : "subscribe", "params" : [ 0, "pin1-topic" ] } 

<<< { "result":"Success" } 
   

Delete MQTT event from pin 



HAIIC MICA  GPIO Container 

10 HARTING IT Software Development 

Method: delete_event 

Parameters: gpio_pin_number (integer value between 0 and 7 (pin 1 to pin 8) ) 

Return Value: 

"Success" in case of success, error message including error code in case of error 

Example: delete MQTT event from pin 1 

>>> { "method" : "delete_event", "params" : [ 0 ] } 

<<< { "result":"Success" } 
 
 

The following error codes can turn up: 

SSO_CLIENT_NOT_CONNECTED = -32099, 
NOT_AUTHORIZED = -32098, 
SPI_CONNECTION_ERROR = -32097, 
TOKEN_NOT_VALID = -32096, 
LOGGED_IN_ALREADY = -32095 
SET_GPIO_INPUT_STATE = -32094, 
NON_EXISTING_PIN = -32093, 
NON_EXISTING_DIRECTION = -32092, 
NON_EXISTING_STATE = -32091, 
COULD_NOT_CONNECT_TO_BROKER = -32090, 
MQTT_RUNNING_ALREADY = -32089, 
MQTT_NOT_RUNNING = -32088, 
MQTT_PIN_WITH_EVENT_ALREADY = -32087, 
MQTT_PIN_WITHOUT_EVENT = -32086                  
 

 


